- Lagrange's principle
- <autom> ■ Lagrange'sches Prinzip n ; lagrangesches Prinzip n
English-german technical dictionary. 2013.
English-german technical dictionary. 2013.
Lagrange multipliers — In mathematical optimization problems, the method of Lagrange multipliers, named after Joseph Louis Lagrange, is a method for finding the extrema of a function of several variables subject to one or more constraints; it is the basic tool in… … Wikipedia
Principle of least action — This article discusses the history of the principle of least action. For the application, please refer to action (physics). In physics, the principle of least action or more accurately principle of stationary action is a variational principle… … Wikipedia
Lagrange multiplier — Figure 1: Find x and y to maximize f(x,y) subject to a constraint (shown in red) g(x,y) = c … Wikipedia
Principle of maximum entropy — This article is about the probability theoretic principle. For the classifier in machine learning, see maximum entropy classifier. For other uses, see maximum entropy (disambiguation). Bayesian statistics Theory Bayesian probability Probability… … Wikipedia
Joseph Louis Lagrange — Lagrange redirects here. For other uses, see Lagrange (disambiguation). Joseph Louis Lagrange Joseph Louis (Giuseppe Lodovico), comte de Lagrange … Wikipedia
Hamilton's principle — In physics, Hamilton s principle is William Rowan Hamilton s formulation of the principle of stationary action (see that article for historical formulations). It states that the dynamics of a physical system is determined by a variational problem … Wikipedia
Pontryagin's minimum principle — Pontryagin s maximum (or minimum) principle is used in optimal control theory to find the best possible control for taking a dynamical system from one state to another, especially in the presence of constraints for the state or input controls. It … Wikipedia
D'Alembert's principle — Classical mechanics Newton s Second Law History of classical mechanics … Wikipedia
Euler–Lagrange equation — In calculus of variations, the Euler–Lagrange equation, or Lagrange s equation is a differential equation whose solutions are the functions for which a given functional is stationary. It was developed by Swiss mathematician Leonhard Euler and… … Wikipedia
Duality principle — or principle of duality may refer to: Duality (projective geometry) Duality (order theory) Duality principle (Boolean algebra) Duality principle for sets Duality principle (optimization theory) Lagrange duality Duality principle in functional… … Wikipedia
Calculus of variations — is a field of mathematics that deals with extremizing functionals, as opposed to ordinary calculus which deals with functions. A functional is usually a mapping from a set of functions to the real numbers. Functionals are often formed as definite … Wikipedia